I've decided to collect some of my favorite projects I've seen people do with my Wiimote projects, derivatives of them, or distantly inspired (through the creator's own admissions). It's a surprise, and flattering to see how many people seem happy to credit me. Thanks all! The list gets more "unusual" the further you go down.
Two Wiimote Whiteboards to make a competative relay race:
Great IR wands for the Wiimote whiteboard. I've been meaning to make these, but I haven't gotten to it yet.
Some nice two handed, two finger pinching systems:
Wiimote Wheelchair art. Unfortunately, no video but more information at this link.
Head tracking prototypes with Anime assets. The effect of the girl coming out of the screen (about half way through the video) is very nicely done with the "haze" layer. His other videos are also worth checking out. I don't know what he does for a living, but he's good at it.
Wii Theremin gallantly created/performed by Ken Moore:
Finally, a video on "chicken head tracking". It doesn't use the Wii remote, but was posted as a response to my video and I love it!
Thursday, November 20, 2008
Thursday, November 13, 2008
Scratch Input and Low-Cost Multi-spectral material sensor
Chris Harrison, a PhD Student at my old program at CMU, presented a couple projects of his at UIST 2008 that I really really like. The first is his "Scratch Input" device. The basic idea is that if you place a senstive microphone on the bottom of a mobile device. Any large, hard surface you put it down on can now be used as an input gesture surface. A variety of gestures can be distinctly and reliably detected with some simple machine learning. Video (academic) below include a nice demo where he turns his entire wall into an MP3 player controller:
The other project he presented was a simple, cheap multi-spectral sensor for recognizing various materials. It includes an IR LED, UV LED, RGB LED, a photoresistor, and a TSL230 TOAS optical sensor. With these, he read the reflectively under different illuminations to recognize 27 different materials with 86.9% accuracy, be this your jeans, your backpack, your desk at home, your desk at work. This means coarse location awareness of mobile devices for cheap, some opportunities for more intelligent power management, and implicit security behaviors when placed on familiar or unfamiliar surfaces. Very nice work.
The other project he presented was a simple, cheap multi-spectral sensor for recognizing various materials. It includes an IR LED, UV LED, RGB LED, a photoresistor, and a TSL230 TOAS optical sensor. With these, he read the reflectively under different illuminations to recognize 27 different materials with 86.9% accuracy, be this your jeans, your backpack, your desk at home, your desk at work. This means coarse location awareness of mobile devices for cheap, some opportunities for more intelligent power management, and implicit security behaviors when placed on familiar or unfamiliar surfaces. Very nice work.
Friday, November 7, 2008
SurfaceWare - sensing glasses for Surface
My colleague, Paul Dietz, in the Applied Sciences group released a video of one of his first projects he did when he joined Microsoft. These glasses use the transparent material of the glass as prisms that sense the amount of liquid in them by watching the amount of internally reflected IR light. Check out the video:
If you aren't familiar with how Surface works, it is a rear projected table that also has a bright IR emitter inside that illuminates objects placed on the surface which are then visible to an IR camera. The video does a good job explaining how the glasses work.
This is actually a revisit of an older project of Paul's called iGlassware. That one used passively powered RFID sensor tags in the base of the glass to capacitively measure the liquid level. The table had a big RFID antenna in it. Paul was also a key developer of Mitsubishi Electric Research Lab's Diamond Touch table being skillfully demonstrated by Ed Tse below.
Ed is currently at Smart Technologies, who helped push out their new touch table:
If you aren't familiar with how Surface works, it is a rear projected table that also has a bright IR emitter inside that illuminates objects placed on the surface which are then visible to an IR camera. The video does a good job explaining how the glasses work.
This is actually a revisit of an older project of Paul's called iGlassware. That one used passively powered RFID sensor tags in the base of the glass to capacitively measure the liquid level. The table had a big RFID antenna in it. Paul was also a key developer of Mitsubishi Electric Research Lab's Diamond Touch table being skillfully demonstrated by Ed Tse below.
Ed is currently at Smart Technologies, who helped push out their new touch table: